Skip to main content

Taking global warming heat to use it..



A recent article in the Times online describes the idea put forward by by Art Rosenfeld, a member of the California Energy Commission that simply painting roof and road way surfaces could reduce carbon emissions this got me to thinking of another possibility that I've entertained in the past. Instead of reflecting the light into space we could try to harness it.

Existing research on building more efficient solar cells is moving forward all over the world and if we can create significantly efficient panel designs we could succeed in solving the heat absorption problem and acquire energy (to avoid needing to burn fossil fuels) all in one solution. It is true that trapping the energy for use could definitely kill two birds with one stone but it would be orders of magnitude more expensive than just painting or coloring surfaces. The advantage would be the power generation of the panels which depending on efficiency could pay themselves off in a short time. Let us say solar cells are used to absorb the radiative energy and turn it into electricity. A first issue that must be addressed is that traditional solar cells are designed for optimal photo conducting of visible frequencies of light, much of the most damaging radiation from the sun however is in the infra red regime (A and B) ...so the formula for any created solar panels would have to be custom designed to absorb those frequencies or there will be no benefit on reducing their effects. Recent developments in nanotube fabrication can help here, by creating a complex surface of nanotubes of various lengths corresponding to the wavelengths of sun light that we want to absorb and thus allowing all the frequencies to be absorbed and converted to usable electricity.

However, even after capture the real problem is what Rachel mentioned, storage. It is something that I and many other engineers have tried to devote some mind time to and have some ideas on the drawing board but it is a very hard problem, what is needed is a very efficient way to store electricity. Large capacitors work but require massive surface area, magnets work but create powerful magnetic fields, chemical batteries , fuel cells are all horribly inefficient more research on trying to finally understand and create room temperature super conductors would solve this problem over night allowing near limitless storage of current in such materials for on demand utilization.

Other novel solutions can be employed where by we use our rapidly advancing knowledge of biotechnology to solve the problem. Recent attempts to try and break down oil using bacteria has found success, another team was able to create bacteria that does the opposite process ..create oil as a waste product(see link below), it may be possible to create a species of bacteria or fungus that converts sunlight to alcohol. So it would require mating the genes for photosynthesis with the sugar processing genes of existing fungus (yeast) allowing the yeast to convert light into alcohol. This sounds like science fiction but there are many plant / animal hybrid organisms created for scientific purposes (tracers and such or plants with animal genes) this would be a practical way of creating clean fuel (alcohol) without requiring sugar as a food source (diverting from tightened supplies of plants that produce it) and it would avoid the carbon tax of oil. It would not address the light reflection problem but could be developed in conjunction with the mentioned technologies to bridge the gap and reduce carbon emmissions significantly from current levels while extracting energy and fuel in the process. At the accelerating rate at which the Earth is warming we have short precious time to develop efficient solutions, let us hope they can be achieved before it is too late.


Links:

http://www.sciencedaily.com/releases/2005/05/050517063708.htm (oil eating bacteria)

http://www.greenoptimistic.com/2008/06/19/nanotube-solar-cells-improve-efficiency-10-times/ (carbon nanotubes for more efficient solar cells)

http://www.timesonline.co.uk/tol/news/environment/article4133668.ece
(oil excreting bacteria)

http://www.ted.com/talks/craig_venter_is_on_the_verge_of_creating_synthetic_life.html

Comments

Popular posts from this blog

Deconstructing Landmark Forum

Deconstructing Landmark Forum:




Prologue:

Recently I was introduced to the Landmark Education organization by a girlfriend, she was effusive about the many lessons she learned and the "breakthroughs" she had while taking their "forum" and other self help and improvement seminar programs. I was immediately credulous, as a student of science I often find myself playing the advocate of reason when discussion emerges over any particular topic. Often the subjects that provide the most fuel for application of this reason based approach to information analysis are seemingly difficult to quantify without descending into machine gun fire ejaculation of "ideas" with little but anecdotal support behind them. The books of experience that people in various areas serve as the guide for their views a priori of new evidence, this bias against the future by correlation with the past often serves to hold people back from changing their views to suit
new observations...the…

Engineers versus Programmers

I have found as more non formally trained people enter the coding space, the quality of code that results varies in an interesting way.

The formalities of learning to code in a structured course at University involve often strong focus on "correctness" and efficiency in the form of big O representations for the algorithms created.

Much less focus tends to be placed on what I'll call practical programming, which is the type of code that engineers (note I didn't use "programmers" on purpose) must learn to write.

Programmers are what Universities create, students that can take a defined development environment and within in write an algorithm for computing some sequence or traversing a tree or encoding and decoding a string. Efficiency and invariant rules are guiding development missions. Execution time for creating the solution is often a week or more depending on the professor and their style of teaching code and giving out problems. This type of coding is devo…

AgilEntity Architecture: Action Oriented Workflow

Permissions, fine grained versus management headache
The usual method for determining which users can perform a given function on a given object in a managed system, employs providing those Users with specific access rights via the use of permissions. Often these permissions are also able to be granted to collections called Groups, to which Users are added. The combination of Permissions and Groups provides the ability to provide as atomic a dissemination of rights across the User space as possible. However, this granularity comes at the price of reduced efficiency for managing the created permissions and more importantly the Groups that collect Users designated to perform sets of actions. Essentially the Groups serve as access control lists in many systems, which for the variable and often changing environment of business applications means a need to constantly update the ACL’s (groups) in order to add or remove individuals based on their ability to perform certain actions. Also, the…