Skip to main content

Taking global warming heat to use it..

A recent article in the Times online describes the idea put forward by by Art Rosenfeld, a member of the California Energy Commission that simply painting roof and road way surfaces could reduce carbon emissions this got me to thinking of another possibility that I've entertained in the past. Instead of reflecting the light into space we could try to harness it.

Existing research on building more efficient solar cells is moving forward all over the world and if we can create significantly efficient panel designs we could succeed in solving the heat absorption problem and acquire energy (to avoid needing to burn fossil fuels) all in one solution. It is true that trapping the energy for use could definitely kill two birds with one stone but it would be orders of magnitude more expensive than just painting or coloring surfaces. The advantage would be the power generation of the panels which depending on efficiency could pay themselves off in a short time. Let us say solar cells are used to absorb the radiative energy and turn it into electricity. A first issue that must be addressed is that traditional solar cells are designed for optimal photo conducting of visible frequencies of light, much of the most damaging radiation from the sun however is in the infra red regime (A and B) the formula for any created solar panels would have to be custom designed to absorb those frequencies or there will be no benefit on reducing their effects. Recent developments in nanotube fabrication can help here, by creating a complex surface of nanotubes of various lengths corresponding to the wavelengths of sun light that we want to absorb and thus allowing all the frequencies to be absorbed and converted to usable electricity.

However, even after capture the real problem is what Rachel mentioned, storage. It is something that I and many other engineers have tried to devote some mind time to and have some ideas on the drawing board but it is a very hard problem, what is needed is a very efficient way to store electricity. Large capacitors work but require massive surface area, magnets work but create powerful magnetic fields, chemical batteries , fuel cells are all horribly inefficient more research on trying to finally understand and create room temperature super conductors would solve this problem over night allowing near limitless storage of current in such materials for on demand utilization.

Other novel solutions can be employed where by we use our rapidly advancing knowledge of biotechnology to solve the problem. Recent attempts to try and break down oil using bacteria has found success, another team was able to create bacteria that does the opposite process ..create oil as a waste product(see link below), it may be possible to create a species of bacteria or fungus that converts sunlight to alcohol. So it would require mating the genes for photosynthesis with the sugar processing genes of existing fungus (yeast) allowing the yeast to convert light into alcohol. This sounds like science fiction but there are many plant / animal hybrid organisms created for scientific purposes (tracers and such or plants with animal genes) this would be a practical way of creating clean fuel (alcohol) without requiring sugar as a food source (diverting from tightened supplies of plants that produce it) and it would avoid the carbon tax of oil. It would not address the light reflection problem but could be developed in conjunction with the mentioned technologies to bridge the gap and reduce carbon emmissions significantly from current levels while extracting energy and fuel in the process. At the accelerating rate at which the Earth is warming we have short precious time to develop efficient solutions, let us hope they can be achieved before it is too late.

Links: (oil eating bacteria) (carbon nanotubes for more efficient solar cells)
(oil excreting bacteria)


Popular posts from this blog

Highly targeted Cpg vaccine immunotherapy for a range of cancer


This will surely go down as a seminal advance in cancer therapy. It reads like magic:

So this new approach looks for the specific proteins that are associated with a given tumors resistance to attack by the body's T cells, it then adjusts those T cells to be hyper sensitive to the specific oncogenic proteins targeted. These cells become essentially The Terminator​ T cells in the specific tumor AND have the multiplied effect of traveling along the immune pathway of spreading that the cancer many have metastasized. This is huge squared because it means you can essentially use targeting one tumor to identify and eliminate distal tumors that you many not even realize exist.

This allows the therapy for treating cancer to, for the first time; end the "wack a mole" problem that has frustrated traditional shot gun methods of treatment involving radiation and chemotherapy ...which by their nature unfortunately damage parts of the body that are not cancer laden but …

Engineers versus Programmers

I have found as more non formally trained people enter the coding space, the quality of code that results varies in an interesting way.

The formalities of learning to code in a structured course at University involve often strong focus on "correctness" and efficiency in the form of big O representations for the algorithms created.

Much less focus tends to be placed on what I'll call practical programming, which is the type of code that engineers (note I didn't use "programmers" on purpose) must learn to write.

Programmers are what Universities create, students that can take a defined development environment and within in write an algorithm for computing some sequence or traversing a tree or encoding and decoding a string. Efficiency and invariant rules are guiding development missions. Execution time for creating the solution is often a week or more depending on the professor and their style of teaching code and giving out problems. This type of coding is devo…

First *extra Galactic* planetary scale bodies observed

This headline

So every so often I see a story that has me sitting at the keyboard for a few seconds...actually trying to make sure the story is not some kind of satire site because the headline reads immediately a nonsense.
This headline did just that.
So I proceeded to frantically click through and it appears it was a valid news item from a valid news source and my jaw hit the floor.
Many of you know that we've been finding new planets outside of our solar system for about 25 years now.
In fact the Kepler satellite and other ground observatories have been accelerating their rate of extra-solar planet discoveries in the last few years but those planets are all within our galaxy the Milky Way.
The three major methods used to detect the bulk of planets thus far are wobble detection, radial transit and this method micro lensing which relies on a gravitational effect that was predicted by Einstein in his general theory of relativity exactly 103 years ago.